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Abstract: We calculate the topological string partition function to all genus on the coni-

fold, in the presence of branes. We demonstrate that the partition functions for different

brane backgrounds (smoothly connected along a quantum corrected moduli space) can

be interpreted as the same wave function in different polarizations. This behavior has

a natural interpretation in the Chern-Simons target space description of the topological

theory. Our detailed analysis however indicates that non-perturbatively, a modification

of real Chern-Simons theory is required to capture the correct target space theory of the

topological string.

We perform our calculations in the framework of a free fermion representation of the

open topological string, demonstrating that this framework extends beyond the simple C
3

geometry. The notion of a fermionic brane creation operator arises in this setting, and we

study to what extent the wave function properties of the partition function can be extended

to this operator.
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1. Introduction

Just as in physical string theory, topological string amplitudes were originally defined genus

by genus from a worldsheet formulation. Much progress has been made in the meantime

in understanding these theories from a target space point of view, which often provides
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better computability than the worldsheet approach [1 – 3]. Unlike the worldsheet descrip-

tion, the target space approach should in principle provide a non-perturbative definition

of the theory. In this paper, we will study a manifestation of the underlying target space

description in the purely perturbative (albeit all genus) partition function of the open

topological string: given a path integral on a space with boundary, the partition function

defines a wave function with phase space the restriction of field space to the boundary.

For a path integral on a non-compact space, we can consider the boundary at infinity.

In the Hamiltonian formalism, we must choose a polarization on field space, and only fix

half of the fields on the boundary. The claim that the partition function defines a wave

function is really the statement that it transforms as a wave function under a change of

this polarization. This transformation property of the partition function is a central focus

of this paper. The question we address, in the example of the resolved conifold, is how

the choice of polarization manifests itself in the open topological string partition function.

The intriguing observation of [9] for the case of the vertex, i.e. the geometry C
3, is that

different brane placements in the geometry appear to correspond to different polarizations.

Consequently, partition functions associated to these different brane placements should be

related by canonical transformations. In this paper, we study this claim for the case of

the conifold. We find that the proper choice of canonical coordinates depends on such

data as the distinction between branes and antibranes, and the choice of Kähler cone. We

emphasize the unusual form of phase space, which with a symplectic form of type (2,0)

presents a holomorphic generalization of the conventional setup. We verify that partition

functions for different brane placements are indeed related by canonical transformations,

upon choosing appropriate complex integration contours, and neglecting terms of order

O(e−1/gs). Our findings appear to point towards the need for a holomorphic version of

Chern-Simons theory (not to be confused with holomorphic Chern-Simons theory, which is

6 dimensional, or Chern-Simons theory for a complex gauge group), which coincides with

conventional Chern-Simons theory perturbatively.

The authors of [9] propose going beyond the picture of partition functions transforming as

wave functions: they introduce brane creation operators using a free fermion formulation

of the topological vertex, and assign the transformation properties to these operators.

Studying the free fermion formulation presents the second thematic thrust of this paper.

We verify a conjecture of [9] about the form of the closed vacuum state |Z〉 (that it be

presentable as the exponential of a sum of fermionic bilinears acting on the vacuum) for

the conifold. While we have difficulty with the physical interpretation of multiple fermionic

operators as creating multiple branes, we press ahead to study their n-point functions in

their own right. The conjecture of [9] that these operators can be transformed into each

other via canonical transformation implies relations between various n-point functions. We

are able to verify such a relation for a carefully selected pair of 2-point functions on the

conifold, but not in general. There is evidently much structure here that remains to be

explored.

The organization of the paper is as follows. After introducing the geometric setup and

the free fermion formalism in sections 2.1 and 2.2, we turn to the question of encoding the
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open topological string data of the conifold in a state |Z〉 given by the exponential of a sum

of fermion bilinears in section 2.3. In section 3, we introduce the fermion operator of [9],

study its interpretation in terms of the A-model (3.1), and calculate the one and two point

function of the operator for the conifold (3.2). The one point function is the partition

function of the open topological string in the presence of a single brane, and the main

object of study of section 4.1 After motivating the connection between brane placement

and polarization in section 4.1, we turn to assigning canonical coordinates to different open

string configuration on the conifold in section 4.2. The transformation properties of the

partition function that follow from the assignment of canonical coordinates are studied in

section 4.3, and we find that they are satisfied only up to O(e−1/gs) corrections. In sec-

tion 4.4, we present some comments regarding these corrections. Finally, in section 4.5, we

study the transformation properties of 2-point functions in one example. We end with con-

clusions. Calculations and some general remarks on linear canonical transformations, the

B-model geometries, Frobenius’ formula, basic hypergeometric series, and Schur function

identities are presented in the appendices.

2. Zopen encoded in |Z〉

2.1 The setup

We consider the A-model on local toric varieties. Our focus is the resolved conifold O(−1)⊕
O(−1) → P

1, but we will always precede our analysis by performing the calculation in the

case of C
3, which was considered in [9].

We will find it convenient to think of these varieties as T 3 fibrations over manifolds with

edges and corners. This is how they arise in the gauged linear σ model construction of

Witten [10]. For C
3 in this presentation, the absolute values |Xi|2 of the three complex

coordinates Xi on C
3 coordinatize the base of the fibration, while the phases coordinatize

the T 3 fiber. The base hence can be thought of as an octant of the Cartesian coordinate

system. On each face, edge, corner of the base, one, two, three 1-cycles respectively of

the fiber degenerate. A similar presentation of the conifold is obtained via a symplectic

quotient construction. We consider the zero locus

|X1|2 + |X2|2 − |X3|2 − |X4|2 = t (2.1)

in C
4, modded out by a U(1) action on the phases. This equation shaves off some corners,

pictorially speaking, of the octant, see figure 1, and again, on each face, edge, corner of the

base, one, two, three 1-cycles respectively of the fiber degenerate. In the following, we will

sometimes depict these geometries simply by indicating the edges and corners (or vertices)

along which the fiber degenerates. We will refer to this locus as the toric skeleton.

1The route via the one point function is not the fastest way to determine this partition function – we

take it merely because we are already more than halfway there after the considerations of section 2.
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|X1|2

|X2|2

|X3|2

|X4|2

Figure 1: Conifold as T 3 fibration over manifold with corners.

Branes can wrap Lagrangian submanifolds in the A-model (though more general branes

are possible and have recently risen to prominence). Lagrangian submanifolds in toric

varieties were studied in [5], whose analysis we briefly review here. For the treatment from

a boundary σ model point of view, see [11]. The class we will study, following [5], is given

by fibrations F with generic fiber T 2 that project to straight lines with rational slope in

the base manifold (the rationality condition is to ensure that the orbits in the T 3 fiber

determined by the Lagrangian condition close upon themselves to yield T 2). As the base

is 3 dimensional, such lines are given as the zero locus of two linear polynomials in the

variables |Xi|2, hence by two 4-tuples q1,q2, such that

∑

qi
I |Xi|2 = cI .

Equivalently, introduce a vector v in R
4 such that

|Xi|2 = svi + di ,

with
∑

qi
Idi = cI and such that qI ⊥ v. For the submanifold F to be Lagrangian with

regard to the Kähler form ω =
∑

i d|Xi|2 ∧ dθi, the angle valued 4-tuple θ restricted to F

must satisfy θ ⊥ v, and consequently, by counting dimensions, θ|F can be expanded in qI,

θ|F = φIqI. For the submanifold to be special Lagrangian,
∑

i q
i
I = 0 [5]. Among these

submanifolds, the Lagrangians whose base ends on the toric skeleton play a distinguished

role: they have topology R
2 × S1, coordinatized by s ∈ R and the angles φ1 and φ2, and

cannot move off the skeleton without developing a boundary. Let us consider as an example

the special Lagrangian defined by the vectors q1 = (0, 1,−1, 0) and q2 = (1, 0,−1, 0) with

c1 = c > t and c2 = 0. The corresponding line in the base is given by

|X2|2 − |X3|2 = c ,

|X1|2 − |X3|2 = 0 ,

and it is easy to see that it ends on the edge of the toric skeleton extending along the

|X2|2 axis. The torus fibered over this line is coordinatized by two angles φ1 and φ2 such

that

θ1 = φ2 , θ2 = φ1 , θ3 = −φ1 − φ2 , θ4 = 0 .
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Note that the S1 coordinatized by φ1 degenerates on the edge, whereas the S1 coordinatized

by φ2 is not contractible.

We review these well-known facts here to make the following observations, which will be

important in the following:

• The distinguished Lagrangians can be chosen to have one of the cI vanishing, say

c2. We can therefore add multiples of q2 to q1 to describe the same Lagrangian, but

with φ1 and φ2 now coordinatizing different cycles in the T 2 fiber.

• The non-contractible S1 can be coordinatized by the phase of those two variables Xi

for which |Xi|2 → ∞ along the edge on which the brane ends.

• By invoking
∑

i Qi|Xi|2 = t, we find to each q1 an equivalent q̃1 with c1 shifted by

±t.

The moduli space of branes on the distinguished special Lagrangian submanifolds is a

cylinder: it is given by the position along an edge, encoded in the area e−r of a holomorphic

disc ending on the brane, together with a phase given by the Wilson loop around the S1,

specifying the flat bundle over the Lagrangian,

t = e−r tr P exp

∮

A ,

where tr specifies the trace in the fundamental representation (we will later use the notation

TrR for a trace in the representation R). A crucial observation for all of the following is

that at a vertex, the entire fiber shrinks to zero, and we hence cannot naively follow the

brane through the vertex from one edge to another. From the A-model point of view, the

complete moduli space hence appears disconnected, consisting of a copy of a cylinder per

edge [11]. In [5, 6], branes ending on different edges are referred to as different phases of

the theory. One main purpose of this paper is to study how the open topological string

partition functions corresponding to these different phases are related, following proposals

of [9] and [7]. The title of the paper gives away the punch line.

To completely specify the open A-model on non-compact geometries, an additional integer

must be specified for each non-compact brane in the geometry. This integer was referred to

as a framing choice in [6], as this is what it corresponds to in the target space description

of the open topological string given by Chern-Simons theory.

2.2 Winding vs. representation basis in the A-model

The free energy of the open topological A-model for a single stack of branes has the

expansion

Fopen = Fk1k2... t
k1
1 · · · tkn

n · · · ,

where the expansion is in complexified Wilson loops, V = P exp
∮

A and tn = e−nrtr V n.

kn indicates the number of boundaries ending on the brane with winding number n. In the
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following, we will use the abbreviated notation

tk =

∞
∏

i=1

(ti)
ki .

The partition function Zopen = exp Fopen can also be expanded in Wilson loops, but note

that the coefficients Zk receive contributions from various Fk. We refer to Zk as the

expansion coefficients of Z in the winding basis. Due to the Frobenius relation

∏

n

(tr V n)kn =
∑

R

χR(Ck)TrRV (2.2)

in the representation theory of the symmetric group (see appendix C for some assorted

comments on this formula), where Ck specifies the conjugacy class of elements with ki

i-cycles, an expansion in a different basis, called the representation basis, is also possible.

The representation basis arises naturally in the vertex formalism. The two representations

are related via

∑

k

ckZk tk =
∑

R

ZR e−|R|r TrRV , (2.3)

(if we take the sum over k to include k = 0, corresponding to the closed string amplitude,

then we must include the trivial representation on the RHS), where we have defined

ZR =
∑

k

ckZk χR(Ck) . (2.4)

We have introduced the formal product ck =
∏

i(i
kiki!)

−1 in the definition of Zk for later

convenience, such that

ck =
|Ck|
|G| ,

where |Ck| denotes the number of elements in the conjugacy class Ck; in Sn, this is given

by

|Ck| =
n!

1k1k1!2k2k2! · · ·nknkn!
.

Note the following: the sum on the LHS of (2.3) is over partitions k of d, representing

elements of the symmetric group Sd, for some d. For d > n, with n the rank of V , the

polynomials
∏

n(tr V n)kn in the eigenvalues of V are not linearly independent. To allow

the unambiguous definition of the coefficients Zk for arbitrarily large d, we must hence

consider the limit n → ∞. On the RHS, this is reflected in the fact that the contribution

for representations R whose Young tableaux has more rows than the rank n of V vanishes.

For d > n, the sum hence does not receive contributions from all representations of Sd. As

the TrRV that don’t vanish are linearly independent, the ZR are well-defined even at finite

n.
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We can invert (2.4), and generally go back and forth between the winding and the repre-

sentation basis, by invoking the two orthogonality relations for finite groups

∑

k

ckχ∗
R1

(Ck)χR2(Ck) = δR1R2 ,

∑

R

χ∗
R(Ck1

)χR(Ck2
) =

δk1k2

ck1

.

With the choice of normalization in (2.4), we obtain the inverse relation

Zk =
∑

R

ZR χR(Ck) . (2.5)

A useful fact from representation theory is that a polynomial χR(x), the character polyno-

mial for the representation R of the symmetric group, exists such that χR(Ck) = χR(x)|x=k.

Rewriting (2.5) as

Z(x)|x=k =
∑

R

ZR χR(x)|x=k , (2.6)

we recognize that the LHS of (2.5) naturally lives in a bosonic Hilbert space, and the

RHS in the isomorphic 0 charge fermionic Hilbert space, in the following sense [8]. The

Hilbert space spanned by the modes αn of a boson, satisfying the Heisenberg algebra

[αm, αn] = δm+n,0, and such that αn|0〉 = 0 for n > 0, is isomorphic to the polynomial

ring C[x1, . . .], with α−n for n > 0 acting as multiplication by xn and αn as differentiation.

Hence, we can introduce the state

Z(x) = Z(α−1, . . .)|0〉 ,

and the evaluation map is effected by considering the matrix element with the coherent

state |k〉 = e
P

knα−n |0〉,

Z(x)|x=k = 〈k|Z(α−1, . . .)|0〉 .

The bosonic Hilbert space is isomorphic to the 0 charge sector of the fermionic Hilbert space

spanned by the modes of a fermion satisfying the Clifford algebra {ψm, ψ∗
n} = δm+n,0, with

ψm|0〉 = ψ∗
m|0〉 = 0 for m > 0. A basis for this space can be introduced whose basis vectors

are in one to one relation to representations R of the symmetric group (see e.g. [12]):

|(m1, . . . ,mr|n1, . . . , nr)〉 =

(−1)
Pr

i=1 ni+r(r−1)/2ψ−m1−
1
2
. . . ψ−mr−

1
2
ψ∗
−n1−

1
2
. . . ψ∗

−nr−
1
2
|0〉 ,

with m1 > . . . > mr, n1 > . . . > nr, where we have specified the representation in terms

of its Young diagram, indicating the number of boxes (to the right | below ) the diagonal.

E.g., for the hook representation with m + 1 horizontal and n + 1 vertical boxes, the

corresponding state is

|(m|n)〉 = (−1)nψ−m− 1
2
ψ∗
−n− 1

2

|0〉 ,

– 7 –
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and

〈(m|n)| = (−1)n〈0|ψn+ 1
2
ψ∗

m+ 1
2
.

Under the isomorphism between the bosonic and fermionic Hilbert space, these basis vectors

are mapped to the respective character polynomials (these are known to form a basis of

the ring of polynomials),

〈0|e
P

xnαn |R〉 = χR(x) .

The relation (2.6) can hence be rewritten as

Z(α−1, . . .)|0〉 =
∑

R

|R〉〈R|Z〉 .

This relation proves very powerful for the case of C
3, as [9] show that the state |Z〉 for this

geometry has a very simple fermionic representation as the exponential of a sum of bilinears

in fermionic modes. All the information of the vertex is hence captured in the coefficients

of these bilinears. In the following subsection, we demonstrate that this continues to hold

for the conifold. It would be interesting to demonstrate, using the gluing rules of the

topological vertex, that |Z〉 has this form for any toric target space.

Finally, note that we can obtain the full partition function by shifting the creation operators

in the definition of coherent states by the open string moduli tn = e−xn ,

|t〉 =
∑

k

e
P

kn(αn−xn)|0〉 ,

such that Z(t) = 〈t|Z〉.

2.3 The fermion bilinear ansatz for |Z〉

The engine behind all the computations performed in this paper will be the topological

vertex [8],

Cγβα = q
κ(γ)

2 α
∑

η

γt

η
(α)

β

η
(αt) . (2.7)

On the RHS, Greek letters are used to denote both representations of the symmetric group

and the corresponding Schur functions. See appendix E for further notation as well as the

many Schur function identities we will use in this subsection. The topological vertex is a

function of the string coupling via q = egs . As written, (2.7) corresponds to the framing

depicted in figure 2. General framing comes with a factor of (−1)
P

ni|αi|q
P

ni
κ(αi)

2 (see [8]

for the definition of ni).

The two geometries we will consider in this paper are C
3 and the conifold. The partition

function Zγβα(C3) is of course simply given by the vertex (2.7). For the conifold, many

– 8 –
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α

β

γ

Figure 2: Vertex with standard framing.

α

β

γ

δ

Figure 3: Conifold with non-standard framing.

of the formulae in the following sections simplify if we choose the framing indicated in

figure 3, i.e. n = −1 on the edges labeled by α and γ.

Using the rules of the vertex, Zδγβα for the conifold is obtained as

Zδγβα = (−1)|γ|q−
κ(γ)

2 Cρδγ (−1)|α|q−
κ(α)

2 Cρtβα(−1)|ρ|Q|ρ|

= (−1)|α|+|γ|

[

γt ρt

η1
(γ)

δ

η1
(γt)

]

(−1)|ρ|Q|ρ|

[

αt ρ

η2
(α)

β

η2
(αt)

]

,

where we have introduced Q = e−t. The sum over ρ can be performed [13 – 15], yield-

ing

Zδγβα = (−1)|α|+|γ|γt δ

η1
(γt)

∑

α

ρt

η1
(γ)

ρ

η2
(α)(−Q)|ρ|αt β

η2
(αt)

= (−1)|α|+|γ|γt δ

η1
(γt){{{γα}}}Qαt β

η2
(αt)

∑

κ

ηt
2

κt
(γ)

ηt
1

κ
(α)(−Q)|η1|+|η2|−|κ| .

Again, for notation, see appendix E.

With the state |Z〉 in the fermionic Hilbert space introduced above, these partition func-

tions can be written as Zγβδ(C
3) = 〈γβα|ZC3〉 and Zδγβα(conifold) = 〈δγβα|Zconifold〉.

The authors of [9] make the powerful conjecture that the state |Z〉 can be written as an

exponential in a sum of fermion bilinears (see also [8]),

|Z〉 = exp





∑

i,j,n,m

aij
mnψi

−m− 1
2
ψj∗

−n− 1
2



 |0〉 , (2.8)
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where independent modes ψi, ψi∗ are introduced for each edge.2 If this is the case, then

|Z〉 is determined by its matrix elements with states represented by hook tableaux [9], up

to a few constants (see below). Recall that these states are given by

|(m|n)〉 = (−1)nψ−m− 1
2
ψ∗
−n− 1

2

|0〉 .

By using the anticommutation relations of the fermionic modes, we obtain [9]

〈(m|n)|Z〉 = (−1)naii
mn , (2.9)

where the trivial representation is inserted at all but the i-th edge, and

〈(p|p′)i(q|q′)j |Z〉 = (−1)p
′+q′(aii

pp′a
jj
qq′ − aij

pq′a
ji
qp′) , (2.10)

with non-trivial representations inserted at the two edges i and j. Computing the LHS

of (2.9) via the topological vertex hence allows us to determine aii. The factorization

〈(p|p′)i(q|q′)j |Z〉 − (−1)p
′+q′aii

pp′a
jj
qq′ = −(−1)p

′+q′aij
pq′a

ji
qp′ (2.11)

is then a non-trivial check on the bilinear ansatz (2.8), and allows us to determine aij up to

constants (i.e. factors independent of the lower indices) which cancel in the product aij
mnaji

rs.

To constrain these, we need to consider the matrix element of |Z〉 with three non-trivial

representations, given by [9]

〈(m|m′)i(n|n′)j(r|r′)k|Z〉 = (−1)m
′+n′+r′(aii

mm′a
jj
nn′a

kk
rr′ + aij

mn′a
jk
nr′a

ki
rm′ + aik

mr′a
ji
nm′a

kj
rn′

−aii
mm′a

jk
nr′a

kj
rn′ − aik

mr′a
jj
nn′a

ki
rm′ − aij

mn′a
ji
nm′a

kk
rr′) . (2.12)

It will turn out that studying matrix elements of hook representations alone does not give

rise to enough constraints to determine all such constants. Finding matrix elements that

allow pinpointing the remaining few is an exercise we leave to the reader.

In this section, after reviewing the computation of these coefficients, performed for C
3

in [9], we show that the conifold passes the factorization test as well, and we determine the

coefficients aij for this case. These coefficient will enter centrally in our study of the open

string partition function on the conifold in upcoming sections.

C
3. To obtain the coefficients aij for C

3 [9] we must specialize the expression (2.7) for

〈γβα|ZC3〉 to the case α = (α1|α2), and β = γ = ·, or β = (β1|β2), γ = ·, respectively.

With merely one representation non-trivial, (2.7) reduces to the Schur function of that

representation,

〈α|ZC3〉 = α .

2We have here chosen the normalization 〈0|Z〉 = 1, i.e. not included the purely closed contribution.

With this normalization, Zδγβα = {{{··}}}〈δγβα|Z〉 for the conifold.
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By the cyclic symmetry of the vertex, this result is independent of which of the three edges

of the toric skeleton of C
3 the brane is ending on. Specializing to hook representations

α = (α1|α2), we hence obtain

aii
α1α2

= (−1)α2(α1|α2) . (2.13)

As we demonstrate in (E.1) of the appendix, the Schur function for a hook representation

evaluates to

(α1|α2) =
q

α1(α1+1)−α2(α2+1)

4

[α1]![α2]![α1 + α2 + 1]
.

For two representations non-trivial,

〈βα · |ZC3〉 = q
κ(β)

2

∑

η

βt

η

α

η
.

To demonstrate that this expression factorizes, as required by (2.11), we use the following

relation for skew Schur polynomials, derived in appendix E,

(α1|α2)

(η1|η2)
= (α1 − η1 − 1|0)(0|α2 − η2 − 1) . (2.14)

We now easily obtain

〈βα · |ZC3〉 = β α +

min(β2,α1)
∑

η1=0

(β2 − η1 − 1|0)(α1 − η1 − 1|0)q− 1
2
κ/ (β2) ×

×
min(β1,α2)

∑

η2=0

(0|β1 − η2 − 1)(0|α2 − η2 − 1)q
1
2
κ/ (β1) .

where we have defined

κ(α1|α2) = α1(α1 + 1) − α2(α2 + 1)

= κ/ (α1) − κ/ (α2) .

This yields the following expression for aij and aji,

(−1)β2aij
α1β2

= Cij

min(β2,α1)
∑

η1=0

(β2 − η1 − 1|0)(α1 − η1 − 1|0)q− 1
2
κ/ (β2) , (2.15)

(−1)α2aji
β1α2

= Cji

min(β1,α2)
∑

η2=0

(0|β1 − η2 − 1)(0|α2 − η2 − 1)q
1
2
κ/ (β1) ,

with CijCji = −1, where the ordered pair (i, j) ∈ {(1, 2), (2, 3), (3, 1)}. By invoking (2.12)

for low representations, we find

(Cij)6 = q .
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β
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β
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Figure 4: Four inequivalent configurations with two branes.

The conifold. The conifold partition function with a brane ending on one edge is given

by setting all but one of the representations in 〈δγβα|Zconifold〉 to the trivial representation.

The four choices lead to two types of expressions,

Z···α = (−1)|α|αt{{{α·}}}
Z··α· =

α

η
ηt(−Q)|η|{{{··}}} = α{{{αt·}}}

Z·α·· = (−1)|α|αt{{{α·}}}
Zα··· =

α

η
ηt(−Q)|η|{{{··}}} = α{{{αt·}}}

reflecting the symmetry of (2.1) under the joint transposition

|X1|2 ↔ |X2|2 , |X3|2 ↔ |X4|2 .

Labeling the 4 patches Zδγβα from 1 to 4, Z4321, this corresponds to the symmetry

1 ↔ 3 , 2 ↔ 4 . (2.16)

By specializing to hook representations, we can read off the coefficients of the fermion

bilinears in accordance with (2.9) as

a11
α1α2

= a33
α1α2

= (−1)α1+1(α2|α1){(α1|α2)·} (2.17)

and

a22
α1α2

= a44
α1α2

= (−1)α2(α1|α2){(α2|α1)·} . (2.18)

The RHS of the above expressions is easy to evaluate. We have already evaluated (α1|α2)

above. {α·} for hook representations is determined in appendix E, see eq. (E.7),

{(α1|α2)·} =

α1
∏

i=−α2

(1 − Qqi) .

For two non-trivial representations, keeping the symmetry (2.16) in mind, 4 inequivalent

configurations arise which constitute two pairs related by flop transitions.

For configuration 1, we obtain

Zαβ··/{{{··}}} = (−1)|β|βt{β·}Q

∑

η

α

η
(βt)ηt(−Q)|η|

– 12 –
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= α{αt·}Q(−1)|β|βt{β·}Q+(−1)|β|q−
κ(β)

2 {β·}Q

∑

ν

αt

νt
(−Q)|α|−|ν|q

κ(ν)
2

∑

κ 6=·

νt

κ

β

κ
.

The steps between the first and second line, which are representative of the types of manip-

ulations which enter in this subsection, are carefully spelled out in (E.8) of the appendix.

To factorize the second term as required by (2.11), we specialize it to hook representations,

α = (α1|α2), β = (β1|β2), and use the identity

(α1|α2)

(η1|η2)
= (α1 − η1 − 1|0)(0|α2 − η2 − 1) (2.19)

derived in appendix E. We then easily find

(−1)β2a43
α1β2

= C43(−1)β2q
1
2
κ/ (β2){(0|β2)·}

α1
∑

ν1=0

(0|α1 − ν1 − 1)(−Q)α1−ν1 ×

×q
1
2
κ/ (ν1)

min(β2,ν2)
∑

κ2=0

(0|ν1 − κ2 − 1)(0|β2 − κ2 − 1)

(−1)α2a34
β1α2

= C34(−1)β1q−
1
2
κ/ (β1){(β1|0)·}

α2
∑

ν2=0

(α2 − ν2 − 1|0)(−Q)α2−ν2 ×

×q−
1
2
κ/ (ν2)

min(β1,ν1)
∑

κ1=0

(ν2 − κ1 − 1|0)(β1 − κ1 − 1|0) ,

with C43C34 = 1
(1−Q) .

For configuration 2,

Zα··β/{{{··}}} = (−1)|β|βt{β·}
∑

η

α

η
ηt(β)(−Q)|η| ,

and upon specializing to hook representations, a similar calculation as above yields

(−1)β2a41
α1β2

= C41(−1)β2{(0|β2)·}
α1
∑

η1=0

(−Q)η1(α1 − η1 − 1|0) ×

×q−
1
2
κ/ (η1)

min(β2,η1)
∑

κ1=0

(β2 − κ1 − 1|0)(η1 − κ1 − 1|0)

(−1)α2a14
β1α2

= C14(−1)β1{(β1|0)·}
α2
∑

η2=0

(−Q)η2(0|α2 − η2 − 1) ×

×q
1
2
κ/ (η2)

min(β1,η2)
∑

κ2=0

(0|β1 − κ2 − 1)(0|η2 − κ2 − 1) ,

with C14C41 = − Q
(1−Q) .

Configuration 3 gives rise to

(−1)|α|+|β|Z·α·β/{{{··}}} = αt{αβ}βt .
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Specializing to hook representations leaves us with

(−1)|α|+|β|Z·α|·β/{{{··}}} = αtβt{(α1|α2)(β1|β2)}Q

= αtβt{α·}Q{β·}Q
(1 − Qqα1+β1+1)(1 − Qq−(α2+β2+1))

(1 − Qqα1−β2)(1 − Qqβ1−α2)
.

A gratifying cancellation, see (E.9), now disentangles α1, α2 in α, and likewise for β, re-

sulting in

a31
α1β2

= C31(−1)α1(β2|α1){(α1|β2)·}
qα1+ 1

2 − q−β2−
1
2

1 − Qqα1−β2
,

a13
β1α2

= C13(−1)β1(α2|β1){(β1|α2)·}
qβ1+ 1

2 − q−α2−
1
2

1 − Qqβ1−α2
,

with C13C31 = Q. By the symmetries of the conifold, we know that C13 = C31, hence

C13 = c13
√

Q, with c2
13 = 1.

Finally, for configuration 4, we get

Zα·β·/{{{··}}} =
α

η

β

ν

∑

κ

νt

κt

ηt

κ
(−Q)|η|+|ν|−|κ|

= α{αt·}Q β{βt·}Q +
∑

η,ν,κ 6=·

α

η

ηt

κ

β

ν

νt

κt
(−Q)|η|+|ν|−|κ| .

This yields

(−1)β2a42
α1β2

= C42
α1
∑

η1=0

β2
∑

ν2=0

min(η1,ν2)
∑

κ2=0

(α1 − η1 − 1|0)(0|η1 − κ2 − 1) ×

×(ν2 − κ2 − 1|0)(0|β2 − ν2 − 1)(−Q)η1+ν2−κ2 ,

(−1)α2a24
β1α2

= C24
α2
∑

η2=0

β1
∑

ν1=0

min(η2,ν1)
∑

κ1=0

(0|α2 − η2 − 1)(η2 − κ1 − 1|0) ×

×(0|ν1 − κ1 − 1)(β1 − ν1 − 1|0)(−Q)η2+ν1−κ1 ,

with C24C42 = Q. By the symmetries of the conifold, C24 = C42, allowing us to conclude

C24 = c24
√

Q with (c24)2 = 1.

By invoking (2.12) for low representations, we can determine the following relations between

the constants Cij,

C14 = −
√

qQC34 ,

c13c24 = −1 .

Note that the coefficients aij related by flop transitions are very similar. The factors they

differ by are interpreted geometrically in [16], see also [17].
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3. The fermion operator

The target space description of the open A-model is given by an instanton modified Chern-

Simons action [4]. In fact, this description underlies [2, 18] the development of the vertex

formalism. The target space description of the B-model is given by holomorphic Chern-

Simons theory. On the mirrors to toric geometries, to which we return in section 4, the

dynamical field of this description is a chiral scalar [5, 3]. The authors of [8] and [9]

propose interpreting the modes αn introduced above as arising in the mode expansion of

this scalar field at the infinities of the target space geometry. The fermionization of the

chiral scalar,

ψ(x) =

∞
∑

m=−∞

ψm− 1
2
e−mx ,

is associated with solitonic excitations of the theory, i.e. branes, such that x is a D-brane

modulus: from the A-model point of view, e−x = e−rtr V . In this section, we wish to study

insertions of this operator from an A-model point of view.

3.1 One- and two-point functions of the fermion operator

An insertion of the fermion operator ψ∗ yields the following,

Ψ∗(x) = 〈0|ψ 1
2
ψ∗(x)|Z〉

= 1 +

∞
∑

n=0

Tr(n|0)(e
−x)〈(n|0)|Z〉

=
∑

R

ZRTrRV .

with V = e−x. In writing the last sum over all representations R (including the trivial

representation), we have used that TrRV = 0 if the Young tableaux corresponding to the

representation R has more than rank V non-vanishing rows. Ψ∗(x) hence yields the open

topological string partition function with U(1) Wilson loop factors tn = e−nx. For the

operator ψ, we get

Ψ(x) = 〈0|ψ∗
1
2
ψ(x)|Z〉

= 1 +

∞
∑

n=0

(−1)n+1〈(0|n)|Z〉Tr (n|0)V

=
∑

R

(−1)|R|ZRTrRtV ,

with |R| the number of boxes in the Young tableaux corresponding to the representation R.

Substituting (2.4) and using the relation χR(Ck) = (−1)|R|+|k|χRt(Ck) between characters

of conjugate partitions , with |k| =
∑

ki, we obtain

Ψ(x) =
∑

k

(−1)|k|ckZktk , (3.1)
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(a similar calculation also appears in [8]). Ψ(x) hence yields the open topological string

partition function with U(1) Wilson loop factors tn = e−nx and each hole weighted by a

minus sign. Vafa [19] identifies this property as distinguishing a topological antibrane from

a brane.

We conclude that inclusion of the operator ψ∗(x), ψ(x) respectively generate the open

topological string partition function with a single brane/antibrane of modulus e−x.

Note that a crucial step in this identification was that all coefficients 〈R|Z〉 with 〈R|
requiring more than one fermionic mode to generate could be dropped, by TrRV = 0 for

such R. What about multiple insertions? Since we have introduced independent fermionic

modes ψi for each edge i, insertions on separate edges simply yield

〈0|ψi
1
2
ψj

1
2

ψj∗(x)ψi∗(y)|Z〉 =
∑

Ri,Rj

ZRi,RjTrRi(e
y)TrRj (e

x) , (3.2)

where the sum again includes Ri = · and Rj = ·. The story becomes more involved for

multiple insertions on the same edge. For two ψ∗ insertions, we obtain

〈0|ψ 1
2
ψ 3

2
ψ∗(x)ψ∗(y)|Z〉 = ex

[

Ψ∗(y) −
∑

n

〈(n|1)|Z〉e−x−(n+1)y + (3.3)

+
∑

m<n

〈(n,m|1, 0)|Z〉e−(m+2)x−(n+1)y
]

−ey
[

Ψ∗(x) −
∑

m

〈(m|1)|Z〉e−(m+1)x−y +

+
∑

n<m

〈(m,n|1, 0)|Z〉e−(m+1)x−(n+2)y
]

.

We would have naively expected all coefficients 〈R|Z〉 to be weighted by the corresponding

Schur polynomials. e.g. for 〈(m,n|1, 0)|Z〉, the corresponding Schur polynomial is

Tr(m,n|1,0)V = s(m,n|1,0)(e
−x, e−y)

= e−r(x+y)(e−sx + e−(s−1)x−y + . . . + e−sy)

= e−(m+1)x−(n+2)y + . . . ,

with r = n + 2, s = m − n − 1, (so e.g. s (x1, x2) = x2
1x

2
2(x

3
1 + . . .)). It is tempting

to interpret the terms that appear in equation (3.3) as the leading contributions to the

polynomials in an expansion in e−x, e−y respectively. Such an expansion would make

sense if we fix the position of one brane while taking the other to infinity along the edge. A

better understanding of the A-model interpretation of such higher point functions is clearly

desirable.

The only higher point function which will enter in the discussion in this paper, in section 4.5,

arises from the insertion of one ψ and one ψ∗ operator on the same edge, for which we

obtain

〈0|ψ(x)ψ∗(y)|Z〉 =
∑

m,n

(−1)n〈(m|n)|Z〉e−(m+1)y−(n+1)x +
1

ey − ex
. (3.4)
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3.2 Evaluating the one- and two-point functions

Having determined the coefficients aij
mn in the fermion bilinear expansion (2.8) of the vac-

uum for C
3 and the conifold, we can easily evaluate the one and two point functions of the

fermion operator for these geometries. For the one point function, we obtain

〈0|ψ∗
1
2
ψ(x)|Z〉 = 1 −

∞
∑

n=0

a0n e−(n+1)x .

Evaluating (2.18) for branes ending on the edges labeled by 2 and 4 of the conifold,

a22
0n = a44

0n = (−1)n(0|n) {(n|0)·}

= (−1)n
∏n+1

i=1 (1 − Qqi−1)

[n + 1]!
q−

1
4
(n+1)n ,

yields

Ψ2(x) = Ψ4(x) =

∞
∑

r=0

(−1)r
∏r

i=1(1 − Qqi−1)

[r]!
q−

1
4
(r−1)re−rx (3.5)

=
∞
∑

r=0

r
∏

i=1

1 − Qqi−1

1 − qi
q

r
2 e−rx

=

∞
∏

i=0

1 − Qqi+ 1
2 e−x

1 − qi+ 1
2 e−x

(3.6)

= exp[−
∞
∑

n=1

e−nx

n[n]
(1 − Qn)] ,

and by comparing (2.18) to (2.13), we see that we can obtain the one-point function for

C
3 from this by setting Q = 0,

Ψ(x) = exp[−
∞

∑

n=1

e−nx

n[n]
] ,

thus reproducing the result of [9].

For branes ending on the edges 1 and 3, evaluating

a11
0n = a33

0n = −(n|0) {(0|n)·}

yields

Ψ1(x) = Ψ3(x) =

∞
∑

r=0

∏r
i=1(1 − Qq1−i)

[r]!
q+ 1

4
(r−1)re−rx (3.7)

=
∞
∑

r=0

r
∏

i=1

Q − qi−1

1 − qi
q

r
2 e−rx
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=
∞
∏

i=0

1 − qi+ 1
2 e−x

1 − Qqi+ 1
2 e−x

(3.8)

= exp[

∞
∑

n=1

e−nx

n[n]
(1 − Qn)] .

Analogously, we obtain

〈0|ψ− 1
2
ψ∗(x)|Z〉 = 1 +

∞
∑

n=0

an0 e−(n+1)x

and with

a22
n0 = a44

n0 = −a11
0n = −a33

0n ,

we can evaluate the conjugate one point function to be

Ψ2∗(x) = Ψ4∗(x) = Ψ1(x) = Ψ3(x)

while

a11
n0 = a33

n0 = −a22
n0 = −a44

n0

and

Ψ1∗(x) = Ψ3∗(x) = Ψ2(x) = Ψ4(x) .

The comparison of (2.18) to (2.13) again let’s us determine the one point function Ψ∗ of

ψ∗ for C
3 by setting Q = 0 in Ψ2,4∗,

Ψ∗(x) = exp[
∞
∑

n=1

e−nx

n[n]
] =

1

Ψ(x)
. (3.9)

Non-canonical framing shifts the power of q in the sum representation (3.5) of the one

point function, such that e.g. Ψ1 for general framing k (relative to the framing depicted in

figure 3) is given by

Ψ1(k)(x) =

∞
∑

r=0

∏r
i=1(1 − Qq1−i)

[r]!
q+ 1

4
(r−1)r(1+2k)(−1)rke−rx .

The representation of the one-point function as an infinite product, as in (3.6) and (3.8),

appears to only be possible for the specific choices of framing we have been considering,

depicted in figures 2 and 3.

Our main focus in the next section will be the transformation properties of these one

point functions. The authors of [9] propose assigning the transformation properties to the

fermion operators themselves. To study this proposal, we will, following [9], consider the

transformation of the brane-antibrane correlator (3.4). We choose this specific two point
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function for simplicity: for branes/antibranes ending on the same edge, it satisfies the

following identity,

〈0|ψ(y)ψ∗(x)|Z〉 =
1

ey − ex
Ψ(y)Ψ∗(x) , (3.10)

which simplifies its manipulation. [9] showed that this identity holds for C
3. In appendix E,

we show that it holds for the conifold as well.

For brane and antibrane ending on separate edges, we easily find

〈0|ψj(y)ψi∗(x)|Z〉 =
∞
∑

m,n=0

aij
mne−(m+1)xe−(n+1)y .

4. The partition function as wave function

4.1 Brane placement as choice of polarization

In [4], Witten provides a target space description of the open topological string in the

A-model as a Chern-Simons theory, modified by instanton corrections, living on the La-

grangian submanifold wrapped by the brane. Given a Lagrangian with boundary, or a

non-compact Lagrangian, interpreted as having a boundary at infinity, the partition func-

tion of this target space theory behaves as a wave function on the phase space given by

the field configurations restricted to the boundary. As the authors of [7] point out, this

provides the backdrop to interpreting the open topological string partition function as a

wave function. The non-compact Lagrangians introduced in section 2.1 have the topology

of a solid torus, with a boundary T 2 at infinity. The phase space is given by the holonomy

of the Chern-Simons gauge field around the two cycles of this torus. In a Hamiltonian

framework, only one of these two variables is fixed as a boundary condition when evaluat-

ing the path integral of the target space action on the Lagrangian submanifold. Evaluating

the path integral hence yields a wave function as a function of this boundary condition. By

standard arguments in quantum mechanics, different choices of cycle yield wave functions

which are related by canonical transformations, see appendix A.

From the point of view of the worldsheet, the open string partition function depends on an

open string modulus, as explained in section 2.1. It is natural to identify the dependence

on this modulus with the boundary condition dependence in the target space picture. This

modulus also requires a choice of cycle, however now at the center of the solid torus. The

two relevant tori, at infinity for the target space description, and at the center of the solid

torus and hence degenerate for the worldsheet, are sketched in figure 5. The only natural

choice for the worldsheet theory is a non-contractible cycle of the solid torus. As we will

explicitly see below, adding multiples of the contractible cycle to this choice corresponds

to a change of framing from the point of view of the topological string ([6], see [20] for this

integer choice appearing in a mathematical treatment of the open topological string; note

that this integer choice has still not been identified from the worldsheet description of the
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Figure 5: The boundary torus at infinity vs. the degenerate torus on which the worldsheet ends.

open topological string). Choosing the contractible cycle as canonical variable on the other

hand does not have a clear interpretation from the worldsheet point of view.

From the description of the moduli space of branes as a disconnected union of cylinders,

as presented in section 2.1, the story seems to end here, with a choice of polarization not

accessible from the worldsheet description of the topological string. However, passing to

the B-model via mirror symmetry, we obtain an improved understanding of the moduli

space as a 4-punctured sphere, i.e. four joined cylinders [5], see appendix B. Given this

modified picture of moduli space, we can determine the open topological string partition

function for a brane close to a given puncture, corresponding to a Lagrangian ending on the

corresponding edge from the A-model point of view, and consider following the partition

function as we move along moduli space to a different puncture, i.e. to a different phase

of the topological string from the A-model point of view. From the discussion above, we

can thus obtain the open topological string partition function expressed in the unnatural

coordinate corresponding to the complexified Wilson loop around a contractible cycle. To

arrive at an expression for the partition function in natural topological string variables, we

must hence perform a canonical transformation on the partition function. Thus, speaking

laxly, different brane placements in the open topological string partition function are related

via changes of polarization of phase space.

In the remaining parts of this section, we wish to substantiate this picture in the case of the

conifold. We give a prescription for determining the canonical coordinates corresponding

to the different punctures, and then verify that the open string partition functions for

different brane placements transform into each other in accordance with this coordinate

assignment.

4.2 The assignment of coordinates

We introduce homogeneous variables yi = e−Yi on CP
n. The Riemann surface representing

the moduli space in the B-model [22] is cut out of the ambient space CP
n (n = 2 for C

3,

n = 3 for the conifold) by linear equations in Yi (none for C
3, one for the conifold) and one

homogeneous equation in e−Yi ,

∑

e−Yi = 0 . (4.1)
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We impose the first set of equations (linear in Yi) to obtain an extended phase space M ,

and, following [9], treat the equation homogeneous in yi as a constraint to be imposed after

quantization.

For C
3, there is no linear equation in Yi to impose, and our proposal for the extended phase

space M descends from the space M̃ = CP
2. As the Yi are the natural coordinates in the

B-model [21], the proper symplectic form on phase space is

ω = ± d log
y1

y3
∧ d log

y2

y3
. (4.2)

Note that ω is not defined when any of the coordinates y1, y2, y3 vanish (in particular, y3 is

not distinguished in this definition, despite appearance). The extended phase space M is

hence properly identified with CP
2 with this locus removed, and is thus given by C

∗ × C
∗.

We nevertheless refrain from introducing global coordinates on this space, as the relevant

class of polarizations descend from foliations of patches of M̃ , as described below.

For the conifold, the extended phase space M descends from the quadric M̃

y1y2 = y3y4e
−t (4.3)

in CP
3. Consider the point t = 0 in complex structure moduli space. By setting

y1 = ab , y2 = cd , y3 = ad , y4 = bc , (4.4)

we can identify this space with CP
1 ×CP

1, coordinatized as (a : c)× (b : d).3 For arbitrary

t, this discussion goes through after a rescaling of the yi, hence yields CP
1 × CP

1 with a

shifted complex structure. For the symplectic considerations in this subsection, this shift is

not relevant (note that the complex structure reenters in imposing the constraint equation

on the Hilbert space). The proper symplectic form on phase space is

ω = ± d log
a

c
∧ d log

b

d
. (4.5)

Again, ω is not defined when any of the coordinates a, b, c, d vanish. We therefore identify

M with CP
1 × CP

1 with this locus removed, again obtaining C
∗ × C

∗.

An important comment is in order. Note that we are proposing a 2 complex dimensional

phase space with a (2, 0) form as symplectic form, whereas our wave functions are to

depend holomorphically on one complex variable. This is in marked contrast to the case of

holomorphic polarization in geometric quantization, in which the symplectic form is a (1, 1)

form, and a choice of polarization is a choice of complex structure. Instead, the correct

approach in our study seems to involve treating the Yi as real variables in counting the

dimension of phase space and choosing a symplectic form, but treating them as complex

e.g. in performing the integrations involved in canonical transformations.

The ambiguity can be traced back to the target space description of the open A-model

as Chern-Simons theory. Conventional (real) Chern-Simons theory only captures the vari-

ations of the flat bundle on the brane. Complexifying the gauge field is to account for

3We thank Greg Moore for very helpful comments pertaining to the following discussion.

– 21 –



J
H
E
P
0
4
(
2
0
0
7
)
0
0
4

variations of the Lagrangian submanifold the brane is wrapping, but without doubling the

degrees of freedom of the theory. We will see further indications that such a complexifica-

tion is required in the following.

We first turn however to the relevant class of polarizations of the extended phase space.

Recall that a polarization is a foliation of phase space by Lagrangian submanifolds. As

announced above, we will consider Lagrangian foliations of M that descend from foliations

of patches of M̃ .

For C
3, we consider foliations of a given patch yi 6= 0 of CP

2 by fixing one choice of

homogeneous variable in that patch – this corresponds to the exponential of the canonical

coordinate – while varying the other – the exponential of the canonical momentum.

For the conifold, an additional subtlety arises. Concretely, in the patch y1 6= 0, the defining

quadric equation for M̃ becomes

y2

y1
=

y3

y1

y4

y1
e−t , (4.6)

and we again consider foliations that arise by fixing one choice of homogeneous variable

while varying another. We will find that the foliations with linear equations for the leaves,

in the above example, this corresponds to fixing y3

y1
or y4

y1
, give rise to the appropriate class

of polarizations for our study.

Our task is now to assign a choice of polarization of phase space to each external edge of the

toric skeleton of the A-model geometry. As discussed, these are in 1 to 1 correspondence

with the punctures of the Riemann surface representing the moduli space of B-branes: the

coordinates yi vanishing on the puncture map to the coordinates |Xi| going to infinity

along the corresponding leg. We identified this property in subsections 2.1 and 4.1 as the

criterion for the associated phases to qualify as canonical coordinates (corresponding to a

Wilson loop around a non-contractible S1). It is hence natural to assign to each puncture

a polarization that descends from a foliation of a patch of M̃ that contains the puncture.

Following [9], we will impose the complementary constraint on the canonical momenta:

that they are chosen among the variables that correspond to a contractible S1 on the leg

of the toric diagram, hence do not vanish at the puncture.

These two criteria assign a subset of the polarizations introduced above to each puncture.

We need to identify the sources of degeneracy within this subset, such that we can assign

a unique choice of canonical coordinates to each of the partition functions determined in

section 3.2. We make this identification with the help of the constraint equation (4.1): each

choice of polarization maps the LHS of this equation to a different differential operator.

Each partition function calculated in section 3.2 incorporates certain data (position of

brane, brane vs. antibrane, etc.). By determining which partition function is annihilated

by which operator, we can map this data to a choice of polarization.

C
3. Recall the equation of the Riemann surface describing the B-brane moduli space on
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P1 : (0 : 1 : −1) P2 : (1 : 0 : −1) P3 : (1 : −1 : 0)

p1 x1 p2 x2 p3 x3

− log y3/y2 − log y1/y2 − log y1/y3 − log y2/y3 − log y2/y1 − log y3/y1

−x p − x p x x − p −p

Table 1: Canonical variables for C3. In the last row, (p1, x1) and (p3, x3) are expressed in terms

of (p2, x2).

the mirror of C
3,

e−Y1 + e−Y2 + e−Y3 = 0 . (4.7)

At each puncture, ReYi goes off to infinity for one i. At each puncture, we hence have

the choice between polarizations descending from foliations of two patches of CP
2. At

P1 : (0 : 1 : −1), e.g., we can consider the patch y2 6= 0. Then, following our prescription,

the canonical coordinates corresponding to P1 are e−x = y1

y2
, and e−p = y3

y2
. This choice

is hence consistent with the positive sign in the definition (4.2) of the symplectic form.

The choice of coordinates corresponding to the patch y3 6= 0 corresponds to the negative

sign. Choosing a sign, we can hence assign a polarization to each puncture, as presented

in table 1.

Upon a choice of polarization, the LHS of the equation (4.7), which we wish to interpret

as a constraint equation on the Hilbert space, gets mapped to a differential operator [9].

The three polarizations listed in table 1 yield the same constraint

1 + e−x + e−p = 0 ,

where x is now interpreted as a multiplication operator, and p 7→ gs∂x. It is a consistency

check for our choice of polarizations that the partition function,

Ψ(x) =

∞
∏

i=0

(1 − qi+ 1
2 e−x)−1 ,

which coincides at all three punctures, i.e. for branes positioned at any of the three legs of

the toric diagram of C
3, is annihilated by this operator, up to some factors of q which are

due to normal ordering ambiguities and which we must introduce by hand,

(1 − q
1
2 e−x − e−gs∂x)Ψ(x) = 0 .

Once we have assigned coordinates to the punctures as above, there are two operations

on the coordinates which we can interpret physically with the help of the constraint equa-

tion.

If we consider coordinates consistent with the opposite sign of the symplectic form not by

changing patches, but by inverting the sign of the momentum, p 7→ −p, the constraint

equation becomes

1 + e−x + ep = 0 ,
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which annihilates

Ψ∗(x) =

∞
∏

i=0

(1 − qi+ 1
2 e−x) ,

again up to q-shifts,

(1 − q−
1
2 e−x − egs∂x)Ψ∗(x) = 0 .

This choice hence distinguishes between Ψ∗ and Ψ, i.e. between branes and antibranes.

We can also give a physical interpretation to the canonical transformation T n, which adds

multiples of p to x, x 7→ x − np. Under this transformation, the constraint operator

becomes

1 − e−p − P (q)enpe−x

with the normal ordering ambiguity P (q) = (−1)nq
1
2
(1+2n). It annihilates the partition

function in framing n,

Ψ(n)(x) =
∞
∑

r=0

(−1)r
1

[r]!
q−

1
4
(r−1)r(1+2n)(−1)nre−rx .

The correspondence between the integer ambiguity arising by adding multiples of p to x

and the framing ambiguity was already developed in [5]. It is gratifying to see this relation

reproduced from the point of view pursued here.

The conifold. Our starting point is CP
3 coordinatized by (e−Y1 : · · · : e−Y4), with the

coordinates satisfying the constraint

Y1 + Y2 − Y3 − Y4 = t .

The equation for the Riemann surface characterizing the B-brane moduli space on the

mirror of the conifold is given by

e−Y1 + e−Y2 + e−Y3 + e−Y4 = 0 . (4.8)

At each puncture on this surface, Re Yi → ∞ for two choices of i (in terms of the A-model

coordinates, these correspond to one base and one fiber coordinate of the resolved conifold).

By our criteria, either choice qualifies as a canonical coordinate at the given puncture. Be-

low, we will determine what this choice corresponds to by invoking the constraint equation.

Upon making a choice, requiring the equation for the leaves of the foliation to be linear

then fixes the patch from which our polarization must descend.

At P1, e.g., Y2, Y4 → ∞. The polarization for which Y2 yields the canonical coordinate

descends from the patch y3 6= 0, as the equation for the leaves of the foliation are then

y1

y3
e−x =

y4

y3
e−t .
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P1 : (1 : 0 : −1 : 0) P2 : (1 : 0 : 0 : −1) P3 : (0 : 1 : 0 : −1) P4 : (0 : 1 : −1 : 0)

p1 x1 p2 x2 p3 x3 p4 x4

I log y3/y1 − log y4/y1 − log y4/y1 − log y3/y1 log y4/y2 − log y3/y2 − log y3/y2 − log y4/y2

p x x −p t − p −t − x −t − x −t + p

II log y1/y3 − log y2/y3 − log y1/y4 − log y2/y4 log y2/y4 − log y1/y4 − log y2/y3 − log y1/y3

p x t − x t + p −t − p t − x x −p

Table 2: Canonical variables for the conifold, with the canonical coordinate chosen along the fiber

(I) or the base (II) .

The choice of sign of the symplectic form (4.5) then determines the appropriate sign of the

canonical momentum, e±p = y3

y1
. We compile table 2 by choosing the canonical coordinate

among the fiber coordinates for row I and the base coordinates for row II.

Equation (4.8) expressed in terms of the canonical coordinates in the top row of table 2

takes the following forms,

P1,3 : 1 + e−x + ep + e−x+p−t = 0

P2,4 : 1 + e−x + e−p + e−x−p−t = 0 . (4.9)

As the partition functions at P1, P3 and P2, P4 respectively that we determined in the

previous section coincide, it is a first test on the consistency of our choice of canonical

coordinates that we obtain the same equations at the respective pairs. And indeed, upon

including the appropriate normal ordering constants, we find that the partition functions

Ψ1,2,3,4 are annihilated by the appropriate constraint operator,

(1 − ep − q−1/2e−x + q−1/2e−xQep)Ψ1,3 = 0

(1 − e−p − q1/2e−x + q1/2e−xQe−p)Ψ2,4 = 0 .

With the help of the constraint equation, we can determine the significance of the second

choice of canonical coordinates. At a puncture, the base and fiber coordinate going to

infinity satisfy, by the constraint equation, Y ∞
f − Y 0

b = −t + Y ∞
b − Y 0

f , i.e. the canonical

variable in the top row of table (2) is related to the variable in the bottom row via xtop+t =

xbottom. Together with ptop = −pbottom, the equations (4.9) are identical when expressed

in terms of the top or bottom variables, up to the substitution t → −t. The two choices

of canonical variables hence correspond to the two choices of Kähler cone for the conifold.

In the sense that the relation ptop = −pbottom effects a change of phase space orientation,

branes and antibranes are swapped under a flop transition.

The two operations p 7→ −p and (p, x)T 7→ T n(p, x)T have the same interpretation as in

the case of C
3. That p 7→ −p distinguishes between branes and antibranes is immediate

upon inspection of the two equations (4.9): they are exchanged by p 7→ −p, consistent with

Ψ1,3 = Ψ2,4∗. The calculation establishing that acting with T n corresponds to a change of

framing generalizes immediately from the C
3 case.

To summarize, upon choosing a sign for the symplectic form, the prescription of choosing

the canonical variable to go to infinity at the puncture and the momentum to 0, supple-

mented for the conifold with the requirement that the leaves of the foliation be determined

by a linear equation, fix an assignment of canonical coordinates to each puncture uniquely
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in the case of C
3, and up to a binary choice in the case of the conifold. This latter choice

reflects the choice of Kähler cone.

In addition, we identify the physical significance of two operations

• p 7→ −p maps canonical coordinates suitable for describing branes to those suitable

for describing antibranes.

• x 7→ x + np maps to coordinates suitable for describing the open topological string

at framing shifted by n units.

In this subsection, evidence for the correct choice of canonical coordinates stemmed from

application of the constraint equation. In the next subsection, we turn to the canoni-

cal transformations relating these coordinates, and their representations on the space of

partition functions.

4.3 Transformation of the partition function

The SL(2, Z) matrices Aij mapping (pj , xj) into (pi, xi) for C
3 and for the conifold can be

read off from the tables 1 and 2 respectively. For C
3, they are

A12 = A23 = A31 =

(

0 −1

1 −1

)

= −TS ,

where

S =

(

0 1

−1 0

)

, T =

(

1 0

1 1

)

.

For the conifold, the transformation matrix from P2 to P1 is given by

A12 =

(

0 −1

1 0

)

= −S ,

and the transformation between P1 and P3, P2 and P4 respectively is affine linear, i.e.

Aij(pj , xj)
T + aij = (pi, xi)

T , with

A13 = A24 =

(

−1 0

0 −1

)

= S2 , a13 =

(

t

−t

)

, a24 =

(

−t

−t

)

.

We now want to study how the operators T and S are represented on the Hilbert space

of which the open string partition function is to be a wave function. Having determined

the canonical coordinates at the various punctures in the previous section, working out the

transformation of a wave function under the respective change of polarization is a canonical

exercise (see appendix A). The subtlety that arises for us however is that phase space is

M = C
∗ × C

∗, i.e. the canonical variables are to be cylinder valued, while the symplectic
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−S

S2◦+ (t,−t)T

Figure 6: Canonical transformations relating different brane placements on the conifold.

form is of type (2,0). This invalidates the canonical treatment in the appendix (for which

X and P are assumed to be self-adjoint). Pursuing the hybrid strategy suggested in the

previous subsection yields suggestive results: following [9], we use the integration kernels

obtained from the canonical approach,

KA(x′, x) = e
1

2gsc
(dx2−2xx′+ax′2) , (4.10)

but give ourselves leeway in the choice of integration contour. Whenever d 6= 0, we in-

terpret the integral as a Gaussian with the contour chosen to ensure convergence, and

evaluate
∫

KA(x′, x)e−nx → e
(a− 1

d
) x′2

2gsc
−nx′

d
− gscn2

2d . (4.11)

With this understanding, we find that the action of the T operator, which corresponds

to a change of framing, can already be implemented at the level of the fermion operator,

whereas our evaluation of the S operator requires the specific choice of coefficients of the

mode expansion which arise upon evaluating the VEV of the fermion operator.

The kernel that follows for the transformation Tm is

KT m(x′, x) = e
1

2gsm
(x2−2xx′+x′2)

.

The result of the integration term by term is
∫

dxKT m(x′, x)e−nx ∼ q−mn2

2 e−nx′
. (4.12)

The coefficients of e−nx in the series expansion of Ψ and Ψ∗ (for both the vertex and the

conifold, with branes inserted on either leg) are shifted under a change of framing by k

units as

Ψ : a0,n−1 7→ (−1)knq−mn(n+1)
2 a0,n−1

Ψ∗ : an−1,0 7→ (−1)knqm
n(n+1)

2 an−1,0 .

We can hence implement a framing shift by combining the integral transform (4.12) with

a shift of the argument of the partition function,

Ψ(m)(x′) =

∫

dxKT m(x′, x)Ψ(x +
m

2
gs + mπi) ,
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Ψ(−m)∗(x′) =

∫

dxKT m(x′, x)Ψ∗(x − m

2
gs + mπi) .

Note that the integral kernel that induces a shift of framing by m units for Ψ induces

a shift of −m units for Ψ∗. This is consistent with our findings that the two partition

functions are related by the opposite choice of sign of the symplectic form. This choice of

sign manifests itself in the choice of sign of ~, which enters in the integral kernel multiplying

m (see appendix A).

Now let’s turn to the transformation given by S. We read off the corresponding integration

kernel from (4.10) to be

KS(x′, x) = e
1

gs
xx′

.

This results in a Fourier transform. We currently only know how to evaluate the trans-

formation directly when the partition function is presented as an infinite product, i.e. for

the particular choice of framing that yields Ψ1,2,3,4 in the form given in (3.6) and (3.8).

Here, we will choose a contour in the complex x plane so that we pick up all residues at

x = gs(i + 1
2), i ≥ 0. We then obtain for C

3

∮

Ψ(x)e
1

gs
xx′

=

∮ ∞
∏

i=0

1

1 − qi+ 1
2 e−x

e
1

gs
xx′

=

∞
∏

i=1

1

1 − qi

∞
∑

n=0

n
∏

i=1

1

1 − q−i
e(n+ 1

2
)x′

=
q−

23
24 e

1
2
x′

η(q)
Ψ∗(−x′ − 1

2
gs) ,

and likewise for the conifold,

∮

Ψ1,3
t (x)ex′x/gs =

∮ ∞
∏

i=0

1 − qi+ 1
2 e−x

1 − Qqi+ 1
2 e−x

ex′x/gs

→ (1 − Q−1)

∞
∏

i=1

1 − Q−1qi

1 − qi

∞
∑

n=0

n
∏

i=1

1 − Qqi

1 − qi
e(n+ 1

2
)x′

Qx′/gs−n

=

∞
∏

i=0

1 − Q−1qi

1 − qi+1
e

gs−2t
2gs

x′

Ψ1,3∗
t−gs

(−x′ − t +
1

2
gs) (4.13)

and

∮

Ψ2,4
t (x)ex′x/gs =

∮ ∞
∏

i=0

1 − Qqi+ 1
2 e−x

1 − qi+ 1
2 e−x

ex′x/gs

→ (1 − Q)

∞
∏

i=1

1 − Qqi

1 − qi

∞
∑

n=0

n
∏

i=1

1 − Qq−i

1 − q−i
e(n+ 1

2
)x′

=
∞
∏

i=0

1 − Qqi

1 − qi+1
e

1
2
x′

Ψ2,4∗
t+gs

(−x′ − 1

2
gs) .
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Note that gs shifts of closed string Kähler parameters have already made several appear-

ances in studies of the open topological A-model, starting with [23].

The integral kernel for the transformation S2 = −1 cannot be read off of (4.10), as c = 0.

It is not hard however to convince oneself that the correct kernel here is simply

KS2(x′, x) = δ(x + x′) .

Let’s now check whether these results are consistent with the canonical coordinates deter-

mined at each puncture.

C
3. The transformation from P2 to P1 for C

3 is given by S2TS. Ignoring the coeffi-

cients and the shifts of the argument by gs, the corresponding integral transformations act

as

Ψ(x)
S−→ Ψ∗(−x)

T−→ Ψ(−x)
S2

−→ Ψ(x) .

Aside from the various shifts and overall coefficients, the partition functions at the punc-

tures j are hence indeed related to those at i by the S2TS integral transform (with

(i, j) ∈ {(1, 2), (2, 3), (3, 1)}, as throughout). Instead of performing the transformations

one by one, we can simply invoke (4.11), as unlike S, S2TS has d 6= 0. The result is

Ψ(x +
1

2
gs + πi)

S2TS−−−→ e
x2

2gs Ψ∗(−x) . (4.14)

To rewrite the transform in a power series that converges for large x, note first that the

partition function on C
3 satisfies the following identity (which is essentially the Jacobi

triple product identity, see appendix D),

Ψ∗(−x) = Ψ(x)
1

(q; q)∞

∞
∑

n=−∞

(−1)nqn2/2e−nx

= Ψ(x)Φ(τ, ζ) , (4.15)

with q = e2πiτ and x = −2πiζ. Φ(τ, ζ) behaves well, upon continuation to complex τ ,

under modular transformations. After the transformation, we can take the gs → 0 limit,

obtaining Φ(τ, ζ) → e
− (x−iπ)2

2gs . We are dropping an infinite sum in e−1/gs corrections. We

would like to interpret these terms as a sign for non-perturbative terms we are missing in

the partition function.4 We will comment on this further in the next subsection. With this

interpretation, we can now complete (4.14) to the following

Ψ(x +
1

2
gs + πi)

S2TS−−−→ e
x2

2gs Ψ∗(−x) → e
πi x

gs
+ π2

2gs Ψ(x) ,

which coincides with the result of applying the transformations S, T , S2 consecutively.

4We thank R. Dijkgraaf for first suggesting this interpretation.
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The conifold. The transformation from P1 to P3 and from P2 to P4 is given by S2 = −1

and shifts by t. Our transformation rules hence imply that the partition functions at

the points of the two pairs should be related, respectively, by replacing the argument

x 7→ −x − t. From our calculations above, the partition functions within each pair are

equal. To check whether these two results are compatible, we must hence relate the one

point function at x to the one point function at −x. To this end, note that at the points P2

and P4, the partition functions for the conifold can be expressed in terms of the partition

function of C
3 as follows,

Ψ2,4(x) =
Ψ(x)

Ψ(x + t)
.

Using (4.15), we thus obtain

Ψ2,4(−x − t) =
Ψ(−x − t)

Ψ(−x)

=
Ψ(x)

Ψ(x + t)

Φ(τ, ζ)

Φ(τ, ζ − t
2πi )

→ e
− 1

2gs
[t2+2t(x−iπ)]

Ψ2,4(x) . (4.16)

Likewise for Ψ1,3,

Ψ1,3(−x − t) → e
1

2gs
[t2+2t(x−iπ)]

Ψ1,3(x) .

Up to the coefficient and, again, O(e−1/gs), we conclude that the transformations are

consistent with our choice of canonical coordinates.

The transformation for the conifold from P2 to P1 and P4 to P3 is given by −S. It acts

as

Ψ2,4(x)
S−→ Ψ2∗,4∗(−x) = Ψ1,3(−x)

S2

−→ Ψ1,3(x) .

With the same caveats as above, the transformation kernel relating Ψ2,4 to Ψ1,3 hence fol-

lows correctly from the canonical coordinates assigned to P1,3 and P2,4. The transformation

from P1,3 to P2,4 is given by (−S)−1 = S. Here,

Ψ1,3(x)
S−→ Ψ1∗,3∗(−x − t) = Ψ2,4(−x − t) ∼ Ψ2,4(x) + O(e−1/gs) ,

where ∼ indicates that we have dropped the coefficient in (4.16).

4.4 Non-perturbative terms: a preliminary study

What is the nature of the missing O(e−1/gs) contributions? If the Chern-Simons proposal

of [4] were the last word on the target space description of the open topological A-model,

we would expect this description (at least in cases where the worldsheet instanton contri-

bution to the Chern-Simons action is convergent) to provide a non-perturbatively complete
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description of the theory. We have witnessed throughout our analysis however that this

description must be modified: a complexified version of the theory seems to be required.

We emphasize again the distinction to complex Chern-Simons theory; the required mod-

ification has the same number of fields as real Chern-Simons theory, and coincides with

it perturbatively. In this subsection, we find a further indication pointing towards the

necessity for such a modification.

In our study so far, we have followed the literature in assuming5

〈eix|e
H

r A|Ψ〉
〈eix|Ψ〉 = eirx . (4.17)

On general grounds, normalized expectation values of Wilson loops in Chern-Simons theory

on solid tori are known to yield characters of the relevant affine Lie algebra, in our case uk.

What has been neglected in (4.17) is to mod out by large gauge transformations (see [24],

which argues for this approach). If we instead take these into account, (4.17) is modified

to [25]

Ψr(x) = exp[irx]
∑

m∈Z

exp[ikmx] , (4.18)

which is indeed a uk character.

How does this modification effect our considerations? Let us revisit the transformation of

Ψ∗(x) in the case of C
3. Recall that the canonical transformation −TS previously yielded,

schematically,

Ψ∗(x) 7→−TS Ψ(−x) . (4.19)

By

Ψ∗(x)Ψ∗(−x) ∼ ϑ(x, 1/k)

η(1/k)
, (4.20)

we argued for Ψ(−x) ∼ Ψ∗(x) + O(e−1/gs).

The wave function for the antibrane with the modification (4.18), which we denote by Ψ̃∗,

is given by

Ψ̃∗(x) =

∞
∑

r=0

1

[r]!
q

1
4
(r−1)reirx

∑

m∈Z

eikmx . (4.21)

Evaluating the Gaussian integral associated to the canonical transformation −TS for the

modified wavefunction term by term yields
∫

dxK−TS(x′, x)eix(r+km) = e
x′2

2gs
−i(r+km)x′+ gs(ir+ikm)2

2 (4.22)

5In this subsection, we use conventions such that x → x + 2π is the periodicity of the exponential; the

substitution x 7→ ix reinstates the conventions used in the rest of the paper. We will also express our results

in terms of the Chern-Simons coupling k, rather than gs. The two are related via gs = − 2πi
k

.
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= e−
kx′2

4πi e−i(r+km)x′
q−

r2

2 eπim2k , (4.23)

hence formally,

Ψ̃∗(x) 7→−TS Ψ(−x − π) e−
kx2

4πi ϑ(−kx

2π
, k)

=
√

i/kΨ(−x − π)ϑ(
x

2π
,−1/k)

=
√

i/k η(−1/k)q−1/24 Ψ∗(x) . (4.24)

We see that the modification (4.18) yields precisely the ϑ function needed to relate Ψ(−x)

to Ψ∗(x). Two main points remain to be understood:

• The coefficient in (4.24), as well as the fact that we obtain Ψ∗(x), and not Ψ̃∗(x),

are possibly due to our considering a too näıve measure in performing canonical

transformations (see [25] for a discussion of the measure factor in the non-abelian

context).

• Our considerations regarding theta functions are formal as real k corresponds to

real modular parameter τ , and this a degenerate limit in which theta functions are

ill-defined. We take this as yet another indication that a complex variant of the

conventional Chern-Simons theory is needed to capture the open topological string.

We are currently investigating these matters, and hope to report on our results else-

where.

4.5 Transformation of the two point function

As we saw above, the open string partition function is given by the one point function of the

fermion operator. One can ask [9] whether the transformation properties of the partition

function studied in the previous subsection can be attributed to the fermion operator. If

so, one would expect to be able to deduce the relation between the higher point operators

as well.

Following [9], we look to the tranformation properties of the brane/antibrane correlator to

study this question. The equality under examination is

〈0|ψi(y)ψj∗(x)|Z〉 ?
=

∫

dỹ KAij (y, ỹ)〈0|ψj(ỹ)ψj∗(x)|Z〉 . (4.25)

By the identity (3.10), which hold for C
3 [9] as well as for the conifold, the RHS of (4.25)

is given by
∫

dỹ KAij (y, ỹ)〈0|ψj(ỹ)ψj∗(x)|Z〉 =

∫

dỹ KAij (y, ỹ)
Ψj(ỹ)

eỹ − ex
Ψj∗(x) ,

while the LHS is

〈0|ψi(y)ψj∗(x)|Z〉 =

∞
∑

m,n=0

aji
mne−(m+1)xe−(n+1)y .
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The identity (4.25) hence boils down to a relation between the coefficients aji
mn and the

products ai
r0a

j
0s. We will consider the calculation for the vertex and for the conifold in

turn.

C
3. From (2.15), we read off

(−1)naji
mn = Cji

min(m,n)
∑

k=0

(0|m − k − 1)(0|n − k − 1)q
1
2
κ/ (m) ,

= Cji(−1)m+n

min(m,n)
∑

k=0

ajj
0,m−k−1a

ii
0,n−k−1q

1
2
κ/ (m) , (4.26)

where we have set −aii
0,−1 = ajj

−1,0 = 1. Hence,

〈0|ψi(y)ψj∗(x)|Z〉 = CjiΨi(y)
∞

∑

k=0

(−1)kΨj∗(x − gs(k + 1))q
1
2
k(k+1)e−(k+1)(x+y) .

(4.27)

Now consider
∫

dx̃KA∗
ji
(x, x̃)Ψi(y)

Ψi∗(x̃)

ey − ex̃
,

with

A∗
ji =

(

−1 −1

1 0

)

.

Since this transformation matrix has d = 0, we cannot perform a Gaussian integration

along the lines of (4.11). We can try to bypass this difficulty, following the authors of [9],

by decomposing the transformation as A∗
ji = A∗

jkA
∗
ki, with

A∗
jk = A∗

ki =

(

0 1

−1 −1

)

.

Then
∫

dx̃ KA∗
ki

(x, x̃)
Ψi∗(x̃)

ey − ex̃
= −e−

1
2
xq

1
8

∞
∑

k=0

e−(k+1)yΨk∗(x + iπ + gs(k − 1

2
))q−

1
2
k ,

and

q
1
8

∞
∑

k=0

e−(k+1)yq−
1
2
k

∫

dx̃KA∗
jk

(x, x̃) e−
1
2
x̃ Ψk∗(x̃ + iπ + gs(k − 1

2
)) =

= −
∞
∑

k=0

e−(k+1)(x+y)Ψj∗(x − gs(k + 1))q
1
2
k(k+1)e

1
2
(x+gs) ,

where we have used (4.15) repeatedly. Up to coefficients, this calculation thus repro-

duces (4.27). We now turn to the analogous computation for the conifold.
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The conifold. a13 and a24 prove to satisfy a relation similar to (4.26). We derive the

following relation in the appendix,

a42
mn = −C42

min(m,n)
∑

k=0

a44
m−k−1,0 a22

0,n−k−1Q
k .

Hence,

〈0|ψ2(y)ψ4∗(x)|Z〉 =

∞
∑

m,n=0

a42
mne−(m+1)xe−(n+1)y

= −C42 Ψ2(y)Ψ4∗(x)
∞

∑

k=0

e−(k+1)(x+y)Qk

= −C42 e−x Ψ2(y)Ψ4∗(x)

ey − e−x−t
. (4.28)

On the other hand,

∫

dỹ KA∗
42

(x, x̃)〈0|ψ2(y)ψ2∗(x̃)〉 =

∫

dỹ δ(x + x̃ + t)
Ψ2(y)Ψ2∗(x̃)

ey − ex̃

∼ Ψ2(y)Ψ4∗(x)

ey − e−x−t
. (4.29)

We have here used (4.16) and omitted the t dependent prefactor arising upon the analytic

continuation. Up to prefactors, this result agrees with (4.28).

The two examples considered support the proposal of [9] that the fermion operators them-

selves transform as wave functions under canonical transformations. We should point out

however that we have made choices along the way (in particular the choice of examples).

We interpret our results for the fermion operator as indicative of interesting structure to

be explored.

5. Conclusion

We have found strong indications that the open topological string partition function on the

conifold behaves as a wave function. This is consistent with the existence of a target space

description of the topological string, given the B-model result that the moduli space of

branes on the conifold is connected. At various points in our analysis, we have encountered

indications that the correct non-perturbative physics of the topological string should be

captured by a complexified version of Chern-Simons theory. These include the need for a

non-standard symplectic form of degree (2,0), canonical transformations being implemented

by contour integrals, and the incorporation of non-perturbative terms seeming to favor

complex Chern-Simons coupling k. Finding an explicit formulation of this complexified

theory is an intriguing open problem. A better understanding of this theory should also

allow a derivation of the prescription we put forth, extending the proposal of [9], for

assigning canonical coordinates to punctures of the moduli space of branes.
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We have demonstrated that the simple structure of the vacuum in terms of fermion bilinears

verified in [9] for C
3 persists for the conifold. Regarding wave function behavior, our results

are suggestive of a further layer of structure associated with the fermion operators on the

brane moduli space which promises to reward further study.

On a less technical note, it is intriguing, as already pointed out by Witten [26] long ago,

that the worldsheet approach to the topological string makes some of the choices required

for defining the path integral from the point of view of the target space theory. With an eye

towards extracting lessons for the full physical string, this is an observation worth keeping

in the back of ones mind.
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A. Transformations of wave functions in quantum mechanics

Given a state |ψ〉 and two bases |x〉 and |x′〉, the wave function representations of |ψ〉 are

related by

〈x′|ψ〉 =

∫

〈x′|x〉〈x|ψ〉 .

Let us determine the matrix element 〈x′|x〉 between two bases related by a linear canonical

transformation

P ′ = aP + bX

X ′ = cP + dX .

We are considering the conventional case of real (self adjoint) X and P , i.e. [X,P ] = i~,

realized by X a multiplication operator, P = −i~ ∂
∂x and 〈x|p〉 = e

i
~
px. It is easy to derive

the following differential equation for the matrix element,

(x′ − dx)〈x|x′〉 = −i~c
∂

∂x
〈x|x′〉 ,

with the solution

〈x|x′〉 = e
i

~c
(xx′− dx2

2
)+γ ,

and γ an integration constant. Inverting the symplectic transformation, we obtain

〈x′|x〉 = e−
i

~c
(xx′− ax′2

2
)+γ′

.
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Imposing hermiticity of the matrix element then yields

〈x|x′〉 = e
i

2~c
(−dx2+2xx′−ax′2) .

We will set ~ = igs, such that [P,X] = gs. For gs real, this is of course not in accord with

self-adjointness of the operator Y . Replacing the expansion variable qgs with qigs on the

other hand corresponds to the choice ~ = −gs.

B. The mirror geometries

In the Hori-Vafa [21] prescription, the superpotential of the mirror Landau-Ginzburg theory

to the A-model on a non-compact toric target space, presented as in (2.1) above, is given

by

W =

n
∑

i=1

e−Yi ,

with Re Yi = |Xi|2, and n − 3 linear constraints among the Yi reflecting the toric data.

In [22], it is shown that as far as holomorphic data is concerned, we can instead consider

the B-model on the geometry

n
∑

i=1

e−Yi = uv ,

with u and v sections of the appropriate line bundle. Non-compact holomorphic cycles in

this geometry that can be wrapped by B-branes are given by

uv = c

for some c ∈ C. A distinguished class amongst these is given at c = 0, as these do not

exhibit a deformation corresponding to changing c. [5] identify these as the mirrors to the

Lagrangian branes ending on the toric skeleton, discussed in section (2.1). The moduli

space of these branes is given by the Riemann surface

n
∑

i=1

e−Yi = 0 ,

which we can think of as cut out of CP
n by this and the n − 3 constraint equations, these

being homogeneous in the coordinates yi = e−Yi .

For C
3, the above prescription yields the 3-punctured sphere, given by the following linear

equation in P
2,

e−Y1 + e−Y2 + e−Y3 = 0 .

The three punctures lie at (0 : 1 : −1), (1 : 0 : −1), and (1 : −1 : 0). They correspond to

going off to infinity along the three edges of the toric diagram.

– 36 –



J
H
E
P
0
4
(
2
0
0
7
)
0
0
4

For the conifold, the following equation arises

e−Y1 + e−Y2 + e−Y3 + e−Y4 = 0 , (B.1)

with the constraint

Y1 + Y2 − Y3 − Y4 = t . (B.2)

In terms of the homogeneous coordinates yi = e−Yi on P
3, we obtain the following two

equation of degree 2,

y1y3 + y2y3 + y2
3 + ety1y2 = 0 ,

y1y2 − ety3y4 = 0 .

The punctures lie at P1 : (1 : 0 : −1 : 0), P2 : (1 : 0 : 0 : −1), P3 : (0 : 1 : 0 : −1),

P4 : (0 : 1 : −1 : 0). At each puncture, the real part of two of the coordinates Yi is going

off to infinity.

In the Yi coordinates, the 4-punctured sphere naturally appears as 4 cylinders which are

joined. As promised in the text, the moduli space of branes that arises in the B-model

setup hence appears to connect the disconnected moduli space that arose in the A-model

picture.

C. Assorted comments on representations

The irreducible representations of the symmetric group Sn are given by partitions of n,

i.e. by Young tableaux with n boxes. The trivial representation is the tableau (n − 1|0),
the standard representation is (n − 2|1), and its dth exterior power is (n − d − 1|d) (see

appendix E for the notation regarding Young tableaux). Representations of GL(V ) are

constructed from V by application of the Weyl functor, which maps V to the image of the

Young symmetrizer cλ ∈ CSd acting on V ⊗d. This image is empty when the number of

rows of the Young tableau exceeds the dimension of V . The fundamental representation is

hence given by (0|0), the dth symmetric product by (d − 1|0), etc.

Frobenius’ formula (see e.g. section 4 of [27] for an introduction) has as input the class k

of a cycle of Sd, i.e.
∑

iki = d, and yields a polynomial, the respective coefficients of which

correspond to the character of elements in the class Ck in the various representation. From

this starting point, one can derive a polynomial that depends on the representation, and

characters are obtained by evaluating the polynomial at xi = ki. This formula can also be

written as

d
∏

i=1

Pi(x)ki =
∑

|λ|=d, λn+1=0

χλ(Ck)sλ ,
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where Pi(x) = xi
1 + . . . + xi

n. Introducing the n × n matrix V with eigenvalues x1, . . . , xn,

this is

d
∏

i=1

(tr V i)ki =
∑

|λ|=d, λn+1=0

χλ(Ck)TrλV .

We have here used the fact that the Schur polynomial sλ is the character of the GL(n)

representation given by λ.

D. Basic hypergeometric series, the ϑ-function, and the open topological

string partition function

The basic hypergeometric series rφs is defined as [28]

rφs(a1, . . . , ar; b1, . . . , bs; q, z) :=

∞
∑

n=0

(a1; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

[

(−1)nq
n(n−1)

2

]1+s−r
zn ,

where

(a; q)n =

n−1
∏

i=0

(1 − aqi) .

Note that in the notation used in the text,

(q; q)n = (−1)n[n]!q
n(n+1)

4 .

0φ0 has a representation as an infinite product,

0φ0 =

∞
∑

n=0

(−1)n
qn(n−1)/2

(q; q)n
zn

=
∞
∏

n=0

(1 − zqn)

=: (z; q)∞ .

Using the ratio test, we can easily check that this series is absolutely convergent for q < 1

and z ∈ C. In this notation, the Jacobi triple product identity takes the form

(zq1/2; q)∞ (
q1/2

z
; q)∞ (q; q)∞ =

∞
∑

n=−∞

(−1)nqn2/2zn .

In terms of basic hypergeometric series, the partition function (3.7) at Q = 0 can be

expressed as

Ψ∗(z) =

∞
∑

n=0

1

[n]!
q

1
4
(n−1)nzn
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=

∞
∑

n=0

(−1)n

(q; q)n
q

1
4
n(n+1)q

1
4
(n−1)nq−

n
2 (q

1
2 z)n

= (zq1/2; q)∞ .

The Jacobi triple product identity hence implies the following relation between the one

point functions,

Ψ∗(z)Ψ∗(
1

z
) =

1

(q; q)∞

∑

n∈Z

(−1)nqn2/2zn . (D.1)

The RHS of the above equation can be expressed in terms of two modular forms (see

e.g. [29]), the η and ϑ function,

(q; q)∞ =
∞
∏

n=0

(1 − qn+1)

= q−
1
24 η(τ) ,

and

ϑ(ζ, τ) =
∑

n∈Z

eπin2τ+2πinζ

=
∑

n∈Z

qn2/2zn ,

with q = e2πiτ and z = e2πiζ , i.e. gs = 2πiτ , x = −2πiζ. We want to interpret the RHS

of (D.1) as instanton corrections that can be dropped in perturbation theory. To this end,

we consider the modular transformations for which gs → 1
gs

,

η(−1/τ) =
√
−iτη(τ)

and

ϑ(ζ/τ,−1/τ) =
√
−iτeπiζ2/τϑ(ζ, τ) ,

thus obtaining

1

(q; q)∞

∞
∑

n=−∞

(−1)nqn2/2zn =
q

1
24

η(τ)
ϑ(ζ − 1

2
, τ)

=
q

1
24

η(−1/τ)
e−πi(ζ+ 1

2
)2/τϑ(

ζ + 1
2

τ
,−1

τ
) .

The exponential coefficient expressed in terms of gs and x is

e−πi(ζ+ 1
2
)2/τ = e−

(x−iπ)2

2gs .
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E. Identities and computations involving Schur functions

For xi = qρi , ρi = i − 1, i = 1, . . ., [30] obtains the following expression for the Schur

function,

sλ = qn(λ)
∏

x∈λ

(1 − qh(x))−1 ,

where n(λ) =
∑

i≥1(i − 1)λi and h(x) is the hook length of x ∈ λ. With ρi = −i + 1
2 ,

i = 1, . . ., we obtain instead

sλ = q−n(λ)
∏

x∈λ

(1 − q−h(x))−1q−|λ|/2 . (E.1)

From now on, and in the body of the paper, we will use the same symbol for a repre-

sentation, the associated Young tableaux, and the associated Schur function with argu-

ments xi = q−i+ 1
2 . The topological vertex also involves Schur functions sλ with arguments

xi = qαi−i+ 1
2 for a Young tableaux α with αi boxes in the ith row. We denote these as λ(α).

Skew Schur functions sλ/µ with the respective arguments are denoted as λ
µ and λ

µ(α).

We denote Young tableaux by indicating the number of boxes (to the right | below) the

diagnonal, as (m1, . . . ,mr|n1, . . . , nr), with m1 > . . . > mr, n1 > . . . > nr. For hook

representations, this reduces to (α1|α2), with α1 boxes to the right and α2 boxes below the

diagonal (notice that the total number of boxes is hence α1 + α2 + 1). Specializing (E.1)

to hook representations yields

(α1|α2) = q−
α1+α2+1

2 q−
Pα2

i=1 1(1 − q−(α1+α2+1))−1
α1
∏

i=1

(1 − q−i)−1
α2
∏

j=1

(1 − q−j)−1

= q−
α2(α2+1)

2 [α1 + α2 + 1]−1
α1
∏

i=1

q
i
2 [i]−1

α2
∏

j=1

q
j
2 [j]−1

=
q

κ(α1|α2)

4

[α1]![α2]![α1 + α2 + 1]
, (E.2)

where we have introduced

[α] = q
α
2 − q−

α
2 , [α]! =

α
∏

β=1

[β] ,

and

κ(α1|α2) = α1(α1 + 1) − α2(α2 + 1) .

We will also find the following notation useful,

κ/ (α1) = α1(α1 + 1) .
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To evaluate skew Schur functions for hook representations, we first apply the Littlewood-

Richardson rules to obtain, for α1 6= η1 and α2 6= η2,

(α1|α2)

(η1|η2)
= (α1 − η1|α2 − η2 − 1) + (α1 − η1 − 1|α2 − η2) ,

and

(α1|α2)

(η1|α2)
= (α1 − η1 − 1|0) ,

(α1|α2)

(α1|η2)
= (0|α2 − η2 − 1) .

Specializing the RHS to the arguments xi = qρi and plugging in (E.2) then yields

(α1|α2)

(η1|η2)
=

q
1
4
(κ/ (α1−η1−1)−κ/ (α2−η2−1))

[α1 − η1]![α2 − η2]!
(E.3)

= (α1 − η1 − 1|0)(0|α2 − η2 − 1) .

In the last line, we have extended the definition of Schur polynomials by setting (0| − 1) =

(−1|0) = 1.

Three identities we use repeatedly are

α = q
κ(α)

2 αt ,

α β(α) = β α(β) ,

q
κ(β)

2 αβt(αt) =
∑

η

α

η

β

η
.

The last two identities are known to hold by explicit evaluation for many examples, and

are required for the cyclicity of the vertex to hold, but we are not aware of a proof.

Using (E.3), the decomposition of the vertex with two non-trivial representations as in

(2.10) follows easily,

Cλµ· = λµ + q
κ(λ)

2

∑

η 6=·

λt

η

µ

η

= λµ + q
κ(λ1,λ2)

2

min(λ2,µ1)
∑

η1=0

min(λ1,µ2)
∑

η2=0

(λ2|λ1)

(η1|η2)

(µ1|µ2)

(η1|η2)

= λµ +

min(λ2,µ1)
∑

η1=0

(λ2 − η1 − 1|0)(µ1 − η1 − 1|0)q− 1
2
κ/ (λ2) ×

×
min(λ1,µ2)

∑

η2=0

(0|λ1 − η2 − 1)(0|µ2 − η2 − 1)q
1
2
κ/ (λ1) .

To express the partition function of the conifold, we have, following [16] introduced the

notation,

{{{αβ}}} = exp

(

∑

k

Ck(α, β) log(1 − Qqk) −
∞
∑

n=1

(Qq)n

n(1 − qn)2

)
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=

∞
∏

n=1

(1 − Qqn)n
∏

k

(1 − Qqk)Ck(α,β) (E.4)

where

∑

k

Ck(α, β)qk =
q

(q − 1)2



1 + (q − 1)2
dα
∑

i=1

q−i
αi−1
∑

j=0

qj







1 + (q − 1)2
dβ
∑

i=1

q−i
βi−1
∑

j=0

qj





− q

(1 − q)2
, (E.5)

and the product over k in equation (E.4) hence runs over a finite range. This is the only

other expression in this paper where we have used the notation αi to denote the number

of boxes in the ith row of the Young tableaux α, and dα to denote its number of rows. We

also introduce non-doubled brackets as

{αβ} = {{{αβ}}}/{{{··}}} ,

where we haved divided by the closed string contribution to (E.4).

We will need the expression {αβ} for α, β hook representations. To this end,

∑

k

Ck(α, β)qk =
q

(q − 1)2

(

1 + (q − 1)2(q−1
α1
∑

i=0

qi +

α2+1
∑

i=2

q−i)

)

×

×
(

1 + (q − 1)2(q−1
β1
∑

i=0

qi +

β2+1
∑

i=2

q−i)

)

− q

(1 − q)2

=

α1
∑

i=−α2

qi +

β1
∑

i=−β2

qi +
(q − 1)2

q

α1
∑

i=−α2

qi
β1
∑

j=−β2

qj .

(E.6)

For α = · or β = ·, all sums involving α, β respectively should be set to 0. In this

case,

{α·} =

α1
∏

i=−α2

(1 − Qqi) . (E.7)

For the general case, note that the final term in (E.6) simplifies,

(q − 1)2

q

α1
∑

i=−α2

qi
β1
∑

j=−β2

qj =





α1+1
∑

i=−α2+1

β1
∑

j=−β2

+

α1−1
∑

i=−α2−1

β1
∑

j=−β2

−2

α1
∑

i=−α2

β1
∑

j=−β2



 qi+j

= (qα1+1 − q−α2 − qα1 + q−α2−1)

β1
∑

j=−β2

qj

= (−qα1 + q−α2−1)(1 − q)
q−β2 − qβ1+1

1 − q
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= (−qα1 + q−α2−1)(q−β2 − qβ1+1) .

Hence, for α and β both non-trivial,

{αβ} = {α·}{β·}(1 − Qqα1+β1+1)(1 − Qq−(α2+β2+1))

(1 − Qqα1−β2)(1 − Qq−α2+β1)
.

The decomposition (2.10) for configuration 1 in figure 4 is determined as follows,

(−1)|β|Zαβ··/{{{··}}} = βt{β·}
∑

η

α

η
(βt)ηt(−Q)|η|

= {β·}
∑

η,ν

cα
ην ν(βt)βt ηt(−Q)|η|

= q−
κ(β)

2 {β·}
∑

η,ν

cα
ην q

κ(ν)
2

∑

κ

νt

κ

β

κ
ηt(−Q)|η|

= {β·}
∑

η

cα
ηνν βt ηt(−Q)|η| + q−

κ(β)
2 {β·}

∑

η,ν

cα
ην q

κ(ν)
2

∑

κ 6=·

νt

κ

β

κ
ηt(−Q)|η|

= βt{β·}
∑

η

α

η
ηt(−Q)|η| + q−

κ(β)
2 {β·}

∑

η,ν

cα
ην ηt(−Q)|η|q

κ(ν)
2

∑

κ 6=·

νt

κ

β

κ

= α{αt·}βt{β·} + q−
κ(β)

2 {β·}
∑

ν

αt

νt
(−Q)|α|−|ν| q

κ(ν)
2

∑

κ 6=·

νt

κ

β

κ
.

(E.8)

For configuration 3 in figure 4, the following calculations enters,

(1 − Qqα1+β1+1)(1 − Qq−(α2+β2+1))

(1 − Qqα1−β2)(1 − Qqβ1−α2)
− 1

=
Q(−qα1+β1+1 − q−(α2+β2+1) + qα1−β2 + qβ1−α2)

(1 − Qqα1−β2)(1 − Qqβ1−α2)

= −Q
(qα1 − q−α2−1)(qβ1+1 − q−β2−2)

(1 − Qqα1−β2)(1 − Qqβ1−α2)

= −Q
q

α1−α2−1
2 [α1 + α2 + 1]q

β1−β2+1
2 [β1 + β2 + 1]

(1 − Qqα1−β2)(1 − Qqβ1−α2)
,

and

Z·α·β/{{{··}}} = (−1)|α|αt{α·}Q(−1)|β|βt{β·}Q +

(−1)α1+β2
q

1
4
(κ/ (β2)−κ/ (α1))

[α1]![β2]!
(−1)α2+β1

q
1
4
(κ/ (α2)−κ/ (β1))

[α2]![β1]!
×

(1 − Q)2
α1
∏

i=1

(1 − Qqi)

α2
∏

i=1

(1 − Qq−i)

β1
∏

i=1

(1 − Qqi)

β2
∏

i=1

(1 − Qq−i) ×

(−Q)
q

α1−α2−1
2

1 − Qqα1−β2

q
β1−β2+1

2

1 − Qqβ1−α2
. (E.9)
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To derive the relation

〈0|ψi(y)ψi∗(x)|Z〉 =
1

ey − ex
Ψi(y)Ψi∗(x) , (E.10)

for any i = 1, . . . , 4, compare

(ey − ex)〈0|ψi(y)ψi∗(x)|Z〉 =

1 −
∞

∑

n=0

aii
0ne−(n+1)y +

∞
∑

m=0

aii
m0e

−(m+1)x +

∞
∑

m,n=0

(aii
m n+1 − aii

m+1 n)e−(m+1)xe−(n+1)y .

to

Ψi(y)Ψi(x)∗ = 1 −
∞
∑

n=1

aii
0ne−(n+1)y +

∞
∑

m=1

aii
m0e

−(m+1)x −
∞

∑

m,n=1

aii
0naii

m0e
−(m+1)x−(n+1)y

The relation follows by

aii
m−1 n − aii

m n−1 = (−1)k
q

m(m−1)−n(n−1)
4

[m]![n]!

n−1
∏

j=−(m−1)

(1 − Qqj)(1 − Q)

= −aii
0n−1a

ii
m−1 0 ,

with k = m for i = 1, 3, and k = n for i = 2, 4, using

q
m
2 (1 − Qq−m)[n] + q−

n
2 (1 − Qqn)[m] = (1 − Q)[m + n] .

Finally, we derive the relation between a24 and a22, a44 announced in section 4.5. Consider

(−1)β2a42
α1,β2

,

C42
α1
∑

η1=0

β2
∑

ν2=0

min(η1,ν2)
∑

κ=0

(α1−η1 − 1|0)(0|η1−κ−1)(0|β2−ν2−1)(ν2−κ−1|0)(−Q)η1+ν2−κ =

= C42

min(α1,β2)
∑

κ=0

α1−κ
∑

µ=0

β2−κ
∑

ν=0

(α1−κ−µ − 1|0)(0|µ−1)(0|β2 − κ − ν − 1)(ν − 1|0)(−Q)µ+ν+κ

= C42

min(α1,β2)
∑

κ=0

(α1 − κ − 1|0)
µ

µt(−Q)|µ|
(0|β2 − κ − 1)

ν
νt(−Q)|ν|(−Q)κ

= C42

min(α1,β2)
∑

κ=0

(α1 − κ − 1|0) {(0|α1 − κ − 1)·} (0|β2 − κ − 1) {(β2 − κ − 1|0)·} (−Q)κ

= C42

min(α1,β2)
∑

κ=0

(−1)β2−κ−1a22
α1−κ−1,0 a44

0,β2−κ−1(−Q)κ .

Note that we use µ and ν to denote first the number of rows, columns respectively of a

hook representation, and then a general representation.
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